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5. Trigonometry

5.1. Parity and Co-Function Identities .

In Section 4.6 of Chapter 4 we looked at how to calculate trigonometric functions

of values that lie outside the range 0 ⩽ θ ⩽
π

2
. There we used a geometric approach

which involved examining a unit circle. In this chapter we will look at algebraic
methods of calculating these. What this means is that instead of looking at pictures
we will use formulae.

Some of the formulae we will present in this chapter are quite hard to prove and in
this case we will concentrate on using them rather than proving them. On the other
hand, for some of them, it is easy to see where they come from and in these cases
we will indicate how they can be proved.

Let us start with the parity identities. The reason for the name is that in Mathe-
matics the parity of a number tells you whether it is even or odd. We also use even
and odd to describe functions. An odd function is one for which f(−x) = −f(x)
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and an even function is one for which f(−x) = f(x). The formulae in Table 1 tell
us whether each of the trigonometric functions are even or odd.

sin(−θ) = − sin(θ) cos(−θ) = cos(θ)

tan(−θ) = − tan(θ) cot(−θ) = − cot(θ)

cosec(−θ) = − cosec(θ) sec(−θ) = sec(θ)

Table 1. Parity identities.

Remark 5.1.1. The first two of these identities can be seen immediately from the
graphs of y = sin(θ) and y = cos(θ). The remaining identities then follow from the
definitions of tan, cot, cosec and sec.

Here are some examples to show how they can be used.

Example 5.1.2. Find sin

(
11π

6

)
.

Here we will first use the fact that the sine function repeats every 2π. Thus

sin

(
11π

6

)
= sin

(
11π

6
− 2π

)
= sin

(
−π

6

)
. We can now use our table of com-

mon values and sin(−θ) = − sin(θ) to obtain sin
(
−π

6

)
= − sin

(π
6

)
= −1

2
. Hence

sin

(
11π

6

)
= −1

2
.

Example 5.1.3. Find cos

(
7π

4

)
.

Again we will first use the fact that the cosine function repeats every 2π. Thus

cos

(
7π

4

)
= cos

(
7π

4
− 2π

)
= cos

(
−π

4

)
. We can now use our table of com-

mon values and cos(−θ) = cos(θ) to obtain cos
(
−π

4

)
= cos

(π
4

)
=

1√
2
. Hence

cos

(
7π

4

)
=

1√
2
.

Example 5.1.4. Find tan

(
2π

3

)
.

Here we will first use the fact that the tangent function repeats every π. Thus

tan

(
2π

3

)
= tan

(
2π

3
− π

)
= tan

(
−π

3

)
. We can now use our table of common

values and tan(−θ) = − tan(θ) to obtain tan
(
−π

3

)
= − tan

(π
3

)
= −

√
3. Hence

tan

(
2π

3

)
= −

√
3.
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The next identities we will state are the co-function identities. A function f is a

co-function to another function g if f(θ) = g(ϕ) whenever θ+ ϕ =
π

2
. In fact this is

where the ‘co’ comes from in cosine, cosecant and cotangent, since these functions
are co-functions with the sine, secant and tangent functions, respectively.

sin
(π
2
− θ
)
= cos(θ) cos

(π
2
− θ
)
= sin(θ)

tan
(π
2
− θ
)
= cot(θ) cot

(π
2
− θ
)
= tan(θ)

cosec
(π
2
− θ
)
= sec(θ) sec

(π
2
− θ
)
= cosec(θ)

Table 2. Co-function identities.

Remark 5.1.5. Perhaps the easiest way to see where these identities come from is
to go back to a right angled triangle.

Figure 1. How to demonstrate that sin
(π
2
− θ
)
= cos(θ).

For example, if we look at Figure 1, we have sin
(π
2
− θ
)
=

AB

AC
= cos(θ).

The other co-function identities can be obtained in a similar manner.

Sometimes these can give an alternative method of calculating trig functions. Here
are a couple of examples of this.
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Example 5.1.6. Find cos

(
5π

6

)
(note this is the same question as in Example 4.6.7

in Chapter 4.

Here we will first use cos (θ) = sin
(π
2
− θ
)
.

We have cos

(
5π

6

)
= sin

(
π

2
− 5π

6

)
= sin

(
−π

3

)
.

Next we will use sin(−θ) = − sin(θ) and our table of common values to obtain

sin
(
−π

3

)
= − sin

(π
3

)
= −

√
3

2
. Hence cos

(
5π

6

)
= −

√
3

2
, the same as we obtained

in Example 4.6.7 in Chapter 4.

Example 5.1.7. Find tan

(
2π

3

)
(note this is the same question as in Example

5.1.4).

Here we will first use tan(θ) = cot
(π
2
− θ
)
.

We have tan

(
2π

3

)
= cot

(
π

2
− 2π

3

)
= cot

(
−π

6

)
.

Next we will use cot(−θ) = − cot(θ), the definition of cotangent and our table of

common values to obtain cot
(
−π

6

)
= − cot

(π
6

)
= − 1

tan
(π
6

) = − 1

1/
√
3
= −

√
3.

Hence tan

(
2π

3

)
= −

√
3, the same as we obtained in Example 5.1.4.

5.2. Pythagorean Identities .

Next we come to the Pythagorean identities. These are particularly important and
you should keep in mind the one involving sine and cosine if you are trying to solve
any problem involving trigonometry.

sin2(θ) + cos2(θ) = 1

tan2(θ) + 1 = sec2(θ)

1 + cot2(θ) = cosec2(θ)

Table 3. Pythagorean identities.

Of course the last two identities only apply when the functions are defined (for

example the second doesn’t hold for θ =
π

2
since neither the tangent nor the secant

are defined there).

As might be expected given their name, these identities are derived using Pythago-
ras’ Theorem. Looking at Figure 1 again, we see that Pythagoras’ Theorem says
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that |BC|2 + |AB|2 = |AC|2. If we divide both sides of this equation by |AC|2, we

obtain
|BC|2

|AC|2
+

|AB|2

|AC|2
=

|AC|2

|AC|2
. Using Theorem 1.2.18 of Chapter 1 and cancelling

the term on the right hand side, this may be rewritten

(
|BC|
|AC|

)2

+

(
|AB|
|AC|

)2

= 1.

However from Figure 1 we see that sin(θ) =
|BC|
|AC|

and cos(θ) =
|AB|
|AC|

. Thus

sin2(θ) + cos2(θ) = 1. Of course we have only proved the identity for values of θ

between 0 and
π

2
but it does give you a good way of deriving it (while I will include

it on a formula sheet in the exam, this may not be the case for all the exams you
will take in the future).

I won’t indicate how to prove the result for other values of θ but I will show how the
other two results can be derived from this one (the arguments are valid whenever
the respective identities are).

If we divide sin2(θ) + cos2(θ) = 1 by cos2(θ) we obtain
sin2(θ)

cos2(θ)
+

cos2(θ)

cos2(θ)
=

1

cos2(θ)
.

That is

(
sin(θ)

cos(θ)

)2

+ 1 =

(
1

cos(θ)

)2

. Using the definitions of the tangent and the

secant this says that tan2(θ) + 1 = sec2(θ), the second identity.

If we divide sin2(θ) + cos2(θ) = 1 by sin2(θ) we obtain
sin2(θ)

sin2(θ)
+

cos2(θ)

sin2(θ)
=

1

sin2(θ)
.

That is 1+

(
cos(θ)

sin(θ)

)2

=

(
1

sin(θ)

)2

. Using the definitions of the cotangent and the

cosecant this says that 1 + cot2(θ) = cosec2(θ), the third identity.

5.3. Sine and Cosine Rules .

In this section we will look at the sine and cosine rules. These rules are usually
used when we have some information about a triangle (which will not in general be
a right-angled triangle) and we want to find some more. For example we may know
all the lengths of the sides of a triangle and we want to find the angles or we may
know the lengths of two sides of a triangle and the included angle and we want to
find the length of the remaining side and the sizes of the other two angles.

Although these rules are not difficult to prove, they are a little bit more complicated
than the rules we have met up to now, so rather than prove them, we will state them
and then go on to show how they can be used.

The sine and cosine rules are usually stated for a triangle where sizes of the angles are
labelled A, B and C and the lengths of the sides opposite these angles are labelled
a, b and c, as shown in Figure 2. Note that although I have drawn a triangle with

an angle greater than
π

2
, this does not have to be the case, the triangle is completely

arbitrary. The rules are as follows.
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Figure 2. The triangle used in the sine and cosine rules.

Theorem 5.3.1 (The Sine Rule). Given a triangle as shown in Figure 2,

a

sin(A)
=

b

sin(B)
=

c

sin(C)
.

Equivalently
sin(A)

a
=

sin(B)

b
=

sin(C)

c
.

Remark 5.3.2. Note that to use the sine rule we need to know the values of an
angle and the opposite side (for example A and a) and the value of at least one more
angle or side.

Theorem 5.3.3 (The Cosine Rule). Given a triangle as shown in Figure 2,

a2 = b2 + c2 − 2bc cos(A).

Equivalently
b2 = a2 + c2 − 2ac cos(B)

or
c2 = a2 + b2 − 2ab cos(C).

Remark 5.3.4. Note that to use the cosine rule we either have to know the values
of two sides and the included angle (for example A, b and c) or three sides.

Now let us have a look at some examples to see how these rules are used.

Example 5.3.5. Find all the angles in a triangle that has sides 5, 6 and 7.
Although it is not really necessary in this question, I think it is a good idea to get
into the habit of drawing a quick diagram when doing these sorts of problems. I
have shown this in Figure 3, where I have let a = 7, b = 6 and c = 5 (note it doesn’t
matter which sides you call a, b and c).
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Figure 3. The triangle in Example 5.3.5.

It is not necessary to get the dimensions exact but they should be in the right
ballpark, so you can see if your answers are ‘reasonable’.

Now the question is should we use the sine rule or the cosine rule. The sine rule is
only of use if we know an angle and an opposite side and at least another angle or
side, so in this case we have to use the cosine rule. If we solve a2 = b2+c2−2bc cos(A)

for cos(A) we obtain cos(A) =
b2 + c2 − a2

2bc
and on substituting for a, b and c,

cos(A) =
62 + 52 − 72

2(6)(5)
=

1

5
. Hence A ≃ 78.46◦ (we are not doing calculus so it is

fine to use degrees). Note this is only an approximation, so we use ≃ rather than
=.

Next on solving b2 = a2+c2−2ac cos(B) for cos(B) we obtain cos(B) =
a2 + c2 − b2

2ac

and on substituting for a, b and c, cos(B) =
72 + 52 − 62

2(7)(5)
=

19

35
. Hence B ≃ 57.12◦.

Once we had found A, we could also have used the sine rule to find B. However
there is a major drawback with the sine rule. The graph of the sine function is
symmetric about the line y = 90◦ (see Figure 24 in Chapter 4) and this means that
sin(θ) = sin(180◦− θ). So, say we had found sin(B) using the sine rule, there would
still be two possibilities for B, one greater than 90◦ and one less than 90◦ (unless of
course B = 90◦). So we would then have to decide which one of these Bs to choose.
We could do this in several ways; perhaps we could argue that if it was bigger than
90◦ then the angles in the triangle would add up to more than 180◦ for example, so
the correct B would be the one less than 90◦. However some sort of argument is
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always required and my advice is that if you have a choice of which identity to use,
you should use the cosine rule.

We could use the cosine rule again to find the last angle (or indeed the sine rule)
but in this case it is easier to use the fact that the angles in a triangle sum to 180◦.
Thus C = 180◦ − A−B ≃ 180◦ − 78.46◦ − 57.12◦ = 44.42◦. Note that in questions
like this you should really use full calculator accuracy for A and B for otherwise you
could introduce rounding errors.

Summing up, we have A ≃ 78.46◦, B ≃ 57.12◦ and C = 44.42◦, where all the angles
are correct to 2 d.p.

Example 5.3.6. Find the angle A in Figure 4.

Figure 4. The triangle in Example 5.3.6.

In this case we neither have two sides and the included angle nor three sides, so we
can’t use the cosine rule and will have to use the sine rule. Using the sine rule we

obtain
sin(A)

10
=

sin(48◦)

11
. Thus sin(A) =

10 sin(48◦)

11
≃ 0.6756. Hence A ≃ 42.50◦

or A ≃ 180◦ − 42.50◦ = 137.50◦. We now have to decide which of these values is
correct. Of course if we look at Figure 4, it looks as if 42.50◦ is the correct value.
However we want to prove this mathematically. Suppose that A ≃ 137.50◦. Then
the two angles we know add up to approximately 48◦ + 137.50◦ = 185.50◦ and this
is too many degrees for a triangle. Hence we now know that A ≃ 42.50◦, correct to
2 d.p.
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Example 5.3.7. Find the length of the side a in Figure 5.

Figure 5. The triangle in Example 5.3.7.

Here we know two sides and an included angle so we are able to use the cosine
rule. I will let A = 122◦, b = 11 and c = 10. The angle has to be called A since
it is opposite the side with length a but it does not matter if we let b = 10 and
c = 11. In this case we can use the cosine in the form a2 = b2 + c2 − 2bc cos(A) to
obtain a2 = 112 + 102 − 2(11)(10) cos(122◦) ≃ 337.58. Hence a ≃

√
337.58 ≃ 18.37

correct to 2 d.p. Note that I used the value of a2 to full calculator accuracy to find
a (although in this particular case it didn’t affect the final answer to 2 d.p.).

5.4. Sum and Difference Formulae .

In this section we will look at formulae that allow us to express trigonometric func-
tions of sums and differences of angles in terms of products, sums and differences of
the trigonometric functions.

As was the case with the sine and cosine rules, I will not prove the results. Instead
I will state them in Table 4 and then go on to show how they can be used.

Remark 5.4.1. These formulae can be more concisely stated as shown in in Table
5 and it is in this form that they will appear in the formula sheet in the exam.
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sin(A+B) = sin(A) cos(B) + cos(A) sin(B)

sin(A−B) = sin(A) cos(B)− cos(A) sin(B)

cos(A+B) = cos(A) cos(B)− sin(A) sin(B)

cos(A−B) = cos(A) cos(B) + sin(A) sin(B)

tan(A+B) =
tan(A) + tan(B)

1− tan(A) tan(B)

tan(A−B) =
tan(A)− tan(B)

1 + tan(A) tan(B)

Table 4. Sum and difference formulae.

sin(A±B) = sin(A) cos(B)± cos(A) sin(B)

cos(A±B) = cos(A) cos(B)∓ sin(A) sin(B)

tan(A±B) =
tan(A)± tan(B)

1∓ tan(A) tan(B)

Table 5. Concise form of sum and difference formulae.

Example 5.4.2. Find cos
( π

12

)
.

Here we will use cos(A−B) = cos(A) cos(B)+sin(A) sin(B) with A =
π

4
and B =

π

6
.

cos
( π

12

)
= cos

(π
4
− π

6

)
= cos

(π
4

)
cos
(π
6

)
+ sin

(π
4

)
sin
(π
6

)
=

(
1√
2

)(√
3

2

)
+

(
1√
2

)(
1

2

)
=

√
3 + 1

2
√
2

.
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Example 5.4.3. Find tan

(
5π

12

)
.

Here we will use tan(A+B) =
tan(A) + tan(B)

1− tan(A) tan(B)
with A =

π

4
and B =

π

6
.

tan

(
5π

12

)
=

tan
(π
4

)
+ tan

(π
6

)
1− tan

(π
4

)
tan
(π
6

) =
1 + 1√

3

1− (1)
(

1√
3

) =

√
3 + 1√
3− 1

.

Remark 5.4.4. We can also simplify this as follows:
√
3 + 1√
3− 1

·
√
3 + 1√
3 + 1

=
3 + 2

√
3 + 1

3− 1
=

4 + 2
√
3

2
= 2 +

√
3.

I will give full marks for tan

(
5π

12

)
=

√
3 + 1√
3− 1

however.

If we let A = B = θ in the first, third and fifth formulae in Table 4, we obtain the
double angle formulae shown in Table 6 (the alternative expressions for cos(2θ) are
obtained using sin2(θ) + cos2(θ) = 1).

sin(2θ) = 2 sin(θ) cos(θ)

cos(2θ) = cos2(θ)− sin2(θ)

= 2 cos2(θ)− 1

= 1− 2 sin2(θ)

tan(2θ) =
2 tan(θ)

1− tan2(θ)

Table 6. Double angle formulae.

Sometimes these give an easier solution compared to the sum and difference formu-
lae.

Example 5.4.5. Find sin

(
2π

3

)
.

Here we can let θ =
π

3
in sin(2θ) = 2 sin(θ) cos(θ) to obtain

sin

(
2π

3

)
= 2 sin

(π
3

)
cos
(π
3

)
= 2

(√
3

2

)(
1

2

)
=

√
3

2
.
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5.5. Half Angle Formulae .

In this section we will look at further trigonometric formulae which can be used to
calculate values of trigonometric functions but we will also use them in the second
semester when they will help us to integrate squares of trigonometric functions. The
formulae are shown in Table 7.

sin2(θ) =
1− cos(2θ)

2

cos2(θ) =
1 + cos(2θ)

2

tan2(θ) =
1− cos(2θ)

1 + cos(2θ)

Table 7. Half angle formulae.

Remark 5.5.1. Note that these formulae can be derived from the two formulae
cos(2θ) = cos2(θ)− sin2(θ) in Table 4 and sin2(θ) + cos2(θ) = 1 in Table 3, together
with the definition of the tangent function.

Here are a couple of examples showing how they can be used to calculate the values
of trigonometric functions.

Example 5.5.2. Find sin
(π
8

)
.

Using sin2(θ) =
1− cos(2θ)

2
with θ =

π

8
, we have

sin2
(π
8

)
=

1− cos
(
2× π

8

)
2

=
1− cos

(π
4

)
2

=
1− 1√

2

2
=

√
2− 1

2
√
2

.

Hence sin
(π
8

)
=

√√
2− 1

2
√
2

.

Example 5.5.3. Find tan
( π

12

)
.

Using tan2(θ) =
1− cos(2θ)

1 + cos(2θ)
with θ =

π

12
, we have

tan2
( π

12

)
=

1− cos
(
2× π

12

)
1 + cos

(
2× π

12

) =
1− cos

(π
6

)
1 + cos

(π
6

) =
1−

√
3
2

1 +
√
3
2

.

Hence tan
( π

12

)
=

√√√√1−
√
3
2

1 +
√
3
2

.
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Remark 5.5.4.
• This expression can be simplified to tan

( π

12

)
=
√
7− 4

√
3 by multiplying top

and bottom of
1−

√
3
2

1 +
√
3
2

by 1−
√
3
2
. We also have

√
7− 4

√
3 = 2−

√
3 but while it is

easy to see that (2−
√
3)2 = 7− 4

√
3, the other direction is not so obvious!

• Often in maths there is more than one way to do a problem. In this case we could

also use tan(A−B) =
tan(A)− tan(B)

1 + tan(A) tan(B)
with A =

π

4
and B =

π

6
.

tan
( π

12

)
= tan

(π
4
− π

6

)
=

tan
(π
4

)
− tan

(π
6

)
1 + tan

(π
4

)
tan
(π
6

)
=

1− 1√
3

1 + (1)
(

1√
3

)
=

√
3− 1√
3 + 1

=

√
3− 1√
3 + 1

·
√
3− 1√
3− 1

=
3− 2

√
3 + 1

3− 1

=
4− 2

√
3

2

= 2−
√
3

5.6. Sum and Product Identities .

I won’t examine you on them in this course but I will include the sum to product
and product to sum formulae here since they might come in useful in future courses.

The first set of formulae, which are shown in Table 8, express sums of trigonometric
formulae in terms of products.
The second set of formulae, which are shown in Table 9, express products of trigono-
metric formulae in terms of sums.
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sin(A) + sin(B) = 2 sin

(
A+B

2

)
cos

(
A−B

2

)
sin(A)− sin(B) = 2 cos

(
A+B

2

)
sin

(
A−B

2

)
cos(A) + cos(B) = 2 cos

(
A+B

2

)
cos

(
A−B

2

)
cos(A)− cos(B) = −2 sin

(
A+B

2

)
sin

(
A−B

2

)

Table 8. Sum to product formulae.

sin(A) sin(B) =
1

2
[cos(A−B)− cos(A+B)]

cos(A) cos(B) =
1

2
[cos(A−B) + cos(A+B)]

sin(A) cos(B) =
1

2
[sin(A+B) + sin(A−B)]

cos(A) sin(B) =
1

2
[sin(A+B)− sin(A−B)]

Table 9. Product to sum formulae.
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